Weierstrass points on cyclic covers of the projective line

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic Covers of the Projective Line, Their Jacobians and Endomorphisms

ζp ∈ C. Let Q(ζp) be the pth cyclotomic field. It is well-known that Q(ζp) is a CM-field. If p is a Fermat prime then the only CM-subfield of Q(ζp) is Q(ζp) itself, since the Galois group of Q(ζp)/Q is a cyclic 2-group, whose only element of order 2 acts as the complex conjugation. All other subfields of Q(ζp) are totally real. Let f(x) ∈ C[x] be a polynomial of degree n ≥ 5 without multiple ro...

متن کامل

The Rank of the Cartier Operator on Cyclic Covers of the Projective Line

We give a lower bound on the rank of the Cartier operator of Jacobian varieties of hyperelliptic and superelliptic curves in terms of their genus.

متن کامل

Counting Rational Points on Smooth Cyclic Covers

A conjecture of Serre concerns the number of rational points of bounded height on a finite cover of projective space Pn−1. In this paper, we achieve Serre’s conjecture in the special case of smooth cyclic covers of any degree when n ≥ 10, and surpass it for covers of degree r ≥ 3 when n > 10. This is achieved by a new bound for the number of perfect r-th power values of a polynomial with nonsin...

متن کامل

Twelve Points on the Projective Line, Branched Covers, and Rational Elliptic Fibrations

The following divisors in the space Sym12 P1 of twelve points on P 1 are actually the same: (A) The possible locus of the twelve nodal fibers in a rational elliptic fibration (i.e. a pencil of plane cubic curves); (B) degree 12 binary forms that can be expressed as a cube plus a square; (C) the locus of the twelve tangents to a smooth plane quartic from a general point of the plane; (D) the bra...

متن کامل

The Endomorphism Rings of Jacobians of Cyclic Covers of the Projective Line

Suppose K is a eld of characteristic 0, Ka is its algebraic closure, p is an odd prime. Suppose, f(x) 2 K[x] is a polynomial of degree n 5 without multiple roots. Let us consider a curve C : y = f(x) and its jacobian J(C). It is known that the ring End(J(C)) of all Ka-endomorphisms of J(C) contains the ring Z[ p] of integers in the pth cyclotomic eld (generated by obvious automorphisms of C). W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1996

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-96-01649-2